

## The Harvest Juice Panel Interpreting and Applying the Data

Southern Oregon Wine Institute Harvest Seminar Series July 20, 2011

> Gordon Burns ETS Laboratories



### What Happens in the Juice Does Not Stay in the Juice







- pH is a measure of free hydrogen ions in solution (the chemical definition of acidity)
- A gauge of wine or juice "acidity"
- Relationship to microbial stability, phenolic compounds, color expression/stability, potassium bitartrate and calcium stability.



## TA

- Titratable acidity (TA) is a measure of all available hydrogen ions (neutralized by sodium hydroxide)
- A simple test for "acidity"
- No direct relation with pH
- TA does not mean "Total Acids"! (lower than the sum of organic acids)



# Tartaric acid

- Accumulates in grape tissue during development, declines during ripening due to berry growth and dilution.
- Tartaric acid-salts precipitate as potassium bitartrate and calcium tartrate.





- Malolactic fermentation in wines containing low levels of malic acid and high buffer capacity will have little impact on wine pH.
- Malolactic conversion in wines with high malic acid and low buffer capacity can result in a substantial pH increase.



## Potassium

- Potassium moves into cells at maturation.
- Potassium concentration is highest near the grape skin. Crushing, skin contact, and pressing all influence potassium levels.
- Potassium is a critical factor in acid salt formation, tartrate precipitation, and buffer capacity.



#### pH and TA Shift Due to KHT Precipitation and MLF

|                              | Moderate pH (3.52)<br>High tartaric (5.81)<br>Low malic (2.99) |      | Moderate pH (3.54)<br>Low tartaric (2.21)<br>High malic (6.20) |      | High pH (4.00)<br>Moderate tartaric (3.24)<br>Moderate malic (4.10) |      |
|------------------------------|----------------------------------------------------------------|------|----------------------------------------------------------------|------|---------------------------------------------------------------------|------|
|                              |                                                                |      |                                                                |      |                                                                     |      |
|                              | рН                                                             | TA   | рН                                                             | TA   | рН                                                                  | ТА   |
| Initial data                 | 3.52                                                           | 6.31 | 3.54                                                           | 7.27 | 4.00                                                                | 6.20 |
| Post KHT Precipitation       | 3.07                                                           | 3.78 | 3.48                                                           | 6.52 | 4.26                                                                | 5.40 |
| Post Malolactic fermentation | 3.27                                                           | 2.03 | 4.10                                                           | 3.11 | 4.42                                                                | 2.76 |



### brix

- <sup>o</sup>Brix expressed as % by weight.
- Fermentable sugar expressed as % by volume. A must with 23.3 °Brix will not have 23.3% by volume fermentable sugar.
- Juices with identical <sup>o</sup>Brix may have very different final alcohol concentrations due to varying amounts of fermentable sugars.

#### Brix to Glucose/Fructose Relationship

LABORATORIES





# **Potential Ethanol**

- "Official OIV" conversion factor from fermentable sugar = fermentable sugar (g/100 mL) divided by 1.683 (X 0.594)
- Yeast strains, fermentation temperature, fermenter geometry also affect final alcohol concentration



# Ammonia

- Yeasts preferred form of nitrogen.
- N deficient musts supplemented with diammonium phosphate to provide adequate nitrogen levels. Additional adjustments during fermentation beneficial in minimizing the risk of stuck fermentations and sulfide formation.
- Ammonia results expressed as mg NH<sub>3</sub> per liter. May be expressed as N equiv by multiplying NH<sub>3</sub> results by 0.82.



NOPA

- Alpha amino nitrogen, referred to as "Nitrogen by OPA", or NOPA, is determined using a method specific for alpha amino groups.
- Measurement of primary amino acids usable by yeast. NOPA does not include proline, which is not utilized by yeast, or ammonia. NOPA results are expressed as mg nitrogen per liter.



| Analyte                                                                             | Result                                                  | Analysis Date                                |
|-------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|
| 810030211<br>Brix<br>alpha-amino compounds<br>ammonia<br>yeast assimilable nitrogen | 24.1 g/100mL<br>105 mg/L<br>65 mg/L<br>159 mg/L (as N)  | 10/3/08<br>10/3/08<br>10/3/08<br>10/3/08     |
| 809290453<br>Brix<br>alpha-amino compounds<br>ammonia<br>yeast assimilable nitrogen | 23.4 g/100mL<br>140 mg/L<br>210 mg/L<br>309 mg/L (as N) | 9/29/08<br>9/29/08<br>9/29/08<br>9/29/08     |
| 810270342<br>brix<br>alpha-amino compounds<br>ammonia<br>yeast assimilable nitrogen | 23.2 degrees<br>183 mg/L<br>64 mg/L<br>236 mg/L (as N)  | 10/27/08<br>10/27/08<br>10/27/08<br>10/27/08 |