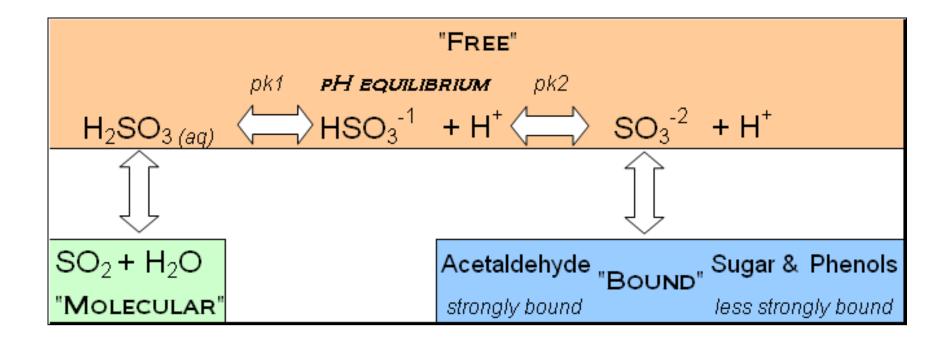
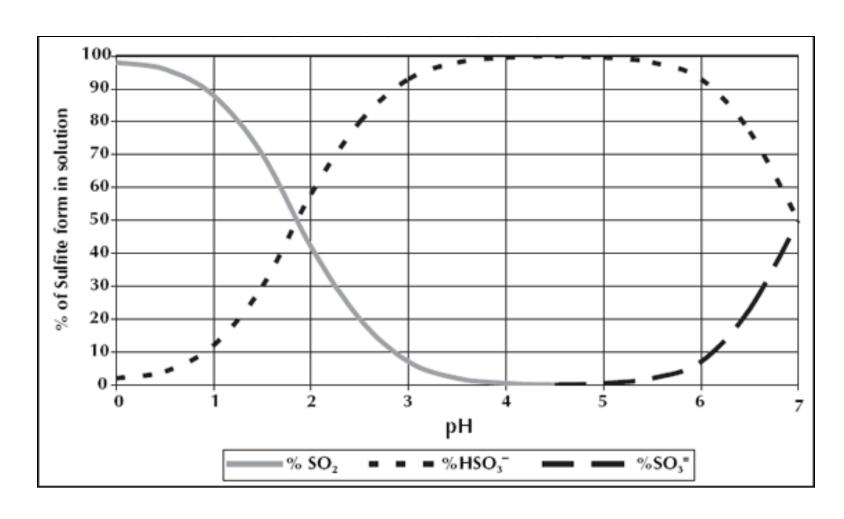

Managing Sulfur Dioxide

Gordon Burns ETS Laboratories


SO2 use in winemaking

- Ancient Egyptians and Romans burned sulfur candles to preserve wines during transport.
- Medieval Dutch and English wine traders in also burned sulfur inside barrels before filling them.



Free, Bound, and Total SO₂

pH Effects on Free SO₂

pH Effects on Free SO₂

рН	% of Free Sulfur Molecular SO ₂	ppm free for 0.8 Molecular	ppm free for 0.5 Molecula
2.90	7.5	11	7
2.95	6.6	12	7
3.00	6.1	13	8
3.05	5.3	15	9
3.10	4.9	16	10
3.15 4.3 19		19	12
3.20 3.9		21	13
3.25	3.4	23	15
3.30	3.1	26	16
3.35	2.7	29	18
3.40	2.5	32	20
3.45	2.2	37	23
3.50	2.0	40	25
3.55	1.8	46	29
3.60	1.6	50	31
3.65	1.4	57	36
3.70	1.3	63	39
3.75	1.1	72	45
3.80	1.0	79	49
3.85	0.9	91	57
3.90	0.8	99	62
3.95	0.7	114	71
4.00	0.7	125	78

Cooperative Extension

Acetobacter & Molecular SO2

- Viability and culturability at 0, 0.35, 0.8 and 1.2 mg/L molecular SO2
- After 2 days at 0.8 and 1.2 mg/L no culturable cells remained.

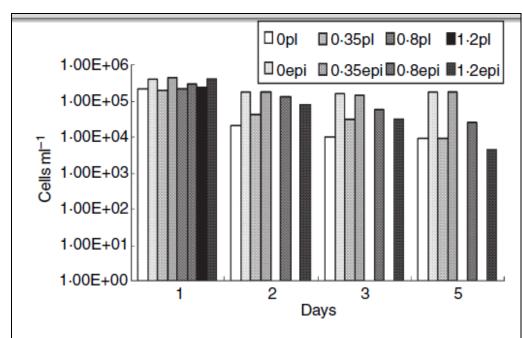


Fig. 3 Effect of different molecular SO₂ concentrations on the viability (microscopic epifluorescence enumeration) and culturability (plating on MRS agar medium) of *Acetobacter pasteurianus* A8 in fined red wine over time (epi, epifluorescence count; pl, plate count). Values are the mean of triplicate cultures

The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of
Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine
W.J. du Toit, I.S. Pretorius and A. Lonvaud-Funel **Journal of Applied Microbiology 2005, 98, 862–871**

Brettanomyces & Molecular SO2

- Viability and culturability at 0, 0.1, 0.25 and 0.8 mg/L molecular SO2
- After 2 days at 0.25 and 0.8 mg/L no culturable cells remained.

Fig. 4 Effect of different molecular SO₂ concentrations on the viability (microscopic epifluorescence enumeration) and culturability (plating on YPD agar medium) of *Brettanomyces bruxellensis* B3a in fined red wine (epi, epifluorescence count; pl, plate count). Values are the mean of triplicate cultures

The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of
Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine
W.J. du Toit, I.S. Pretorius and A. Lonvaud-Funel **Journal of Applied Microbiology 2005, 98, 862–871**

Saccharomyces & Molecular SO2

Table 12-4.	The molecular	sulfur	dioxide re	equirements
for control o	f Saccharomyces	cerevisi	ie.	

Author(s)	Medium	Molecular SO ₂ (mg/L)
Macris and Markakis		
(1974)	medium	1.3
Minarik (1978)	juice	6.4
Beech et al. (1979)	model wine	0.825
King et al. (1981)	medium	1.56
Sudraud and Chauvet		
(1985)	wine	1.5

Source: Principles and practices of winemaking

By Roger B. Boulton, Vernon L. Singleton, Linda F. Bisson

LAB and TSO2, EtOH, pH

- Shows sensitivity to low pH, high ethanol, and SO2
- This study did not calculate molecular SO2

Properties of Wine Lactic Acid Bacteria:
Their Potential Enological Significance
CRAIG R. DAVIS, DJOKO WIBOWO,
GRAHAM H. FLEET., and TERRY H. LEE
Am. J. Enol. Vitic., Vol. 39, No. 2, 1988

Table 2. Proportion (%) of strains of wine lactic acid bacteria growing^a in MRS-TJ broth at several pH values and concentrations of ethanol and total sulfur dioxide.

	Leuconostoc	Pediococcus	Lactobacillus
Parameter	oenos	parvulus	spp.
	(81) ^b	(23)	(22)
pH			
3.0	30.9c	0	18.2
3.2	93.8	43.5	77.3
3.4	98.8	100.0	100.0
3.6	100.0	100.0	100.0
4.5	100.0	100.0	100.0
5.5	100.0	100.0	100.0
7.5	100.0	100.0	100.0
Ethanol (%)			
5	100.0	100.0	100.0
10	98.8	100.0	100.0
12.5	72.8	100.0	86.4
15	9.9	21.8	40.9
Total SO ₂ (mg/L)			
32	100.0	100.0	100.0
64	100.0	100.0	100.0
96	45.7	91.3	81.8
128	11.1	73.9	59.1
160	4.9	39.1	27.3
256	1.2	0	9.1

a Growth assessed after incubation for 2 weeks at 30°C.

b Figures in parentheses denote the number of strains tested.

^c Figures denote the proportion (%) of strains growing in each medium.

Molecular SO2 "Accepted Values"

- "SO2 is an effective germicide and concentrations of 0.8 ppm molecular SO2 will be adequate to control the growth of LAB in wine."
 - Lactic Acid Bacteria and Wine Spoilage* By Dr. Murli Dharmadhikari Iowa State Extension
- "During storage, after all fermentations have completed, white wines can be adjusted to between 0.5 and 0.8 ppm molecular" and...
 - Sulfur Dioxide: Science behind this anti-microbial, anti-oxidant wine additive by Patrick Henderson, Practical Winery and Vineyard Jan/Feb 2009

Molecular SO2 "Accepted Values"

- "The levels of free SO2 generally recommended for wine before bottling is in the range of 15-40 mg free/Liter, depending on the amount required to achieve about 0.8 mg/L (ppm) molecular. The concentration in red wines is usually lower."
 - Wine Science: Principals and applications Ronald S. Jackson Wiley Sciences 3rd Ed 2008
- "For red wines, a level of 0.5 ppm molecular SO2 at bottling is an appropriate target ...red wines usually have a higher pH than whites and often it is not possible to adjust the sulfur dioxide to a level that reached 0.8 ppm molecular SO2 without having too much total SO2.
 - Sulfur Dioxide: Science behind this anti-microbial, anti-oxidant wine additive by Patrick Henderson,
 Practical Winery and Vineyard Jan/Feb 2009

Impact of Malolactic Fermentation on Red Wine Color and Color Stability

James P. Osborne, Tresider Burns, and Charles G. Edwards International Cool Climate Symposium Seattle, WA 2010

- All MLF+ wines had lower concentrations of acetaldehyde, pyruvic acid, and caftaric acid yet higher levels of caffeic acid.
- MLF+ wines had lower wine color, copigmentation, and polymeric pigment values compared to MLF- wines.
- MLF can affect red wine color independent of pH change and that O. oeni can impact the concentrations of phenolic and nonphenolic compounds involved in red wine color stability.

Aldehyde Bridging: Color Stability

ethyl-linked flavanol dimer

ethyl-linked anthocyanin dimer

ethyl-linked anthocyanin-flavanol

R = H; HCOOH, phenyl, flavanyl

pyranoanthocyanin

Forms of Sulfite Used in Enology

Burning elemental sulfur

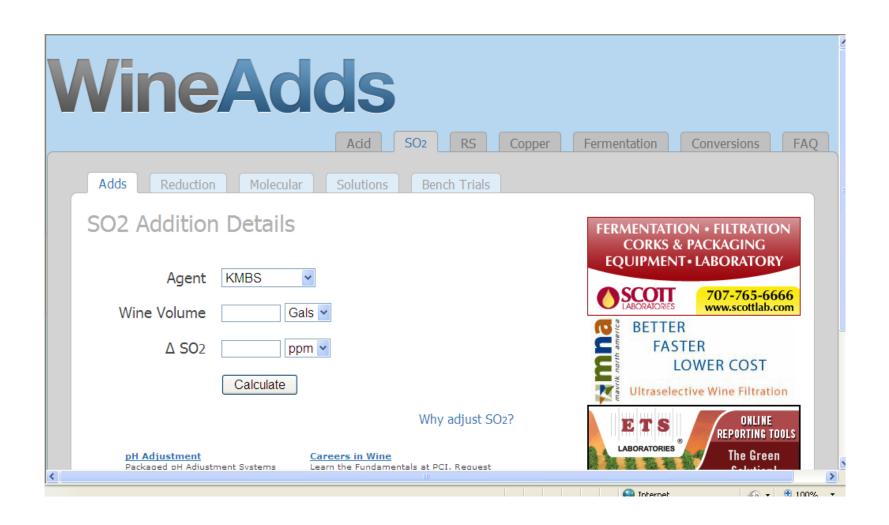
$$S_0 + O_2 = SO_2$$

1 g S₀ burns to give 2 g SO₂; actual results 30% less

Potassium Metabisulfite powder

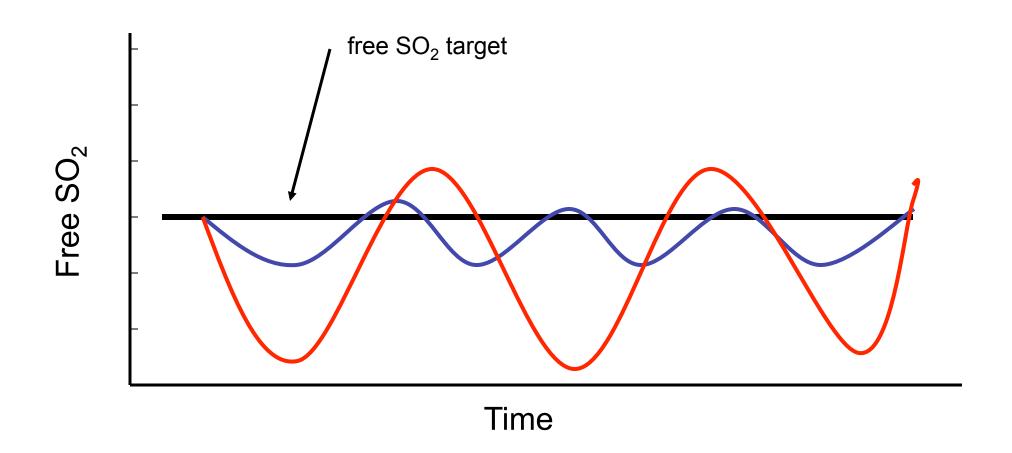
$$K_2S_2O_5 + H_2O -> 2K^+ + 2 [HSO_3]^-$$

 $H^+ + [HSO_3]^- \Leftrightarrow H_2O + SO_2(aq)$
1 g $K_2S_2O_5$ yields 0.575 g SO2


Compressed SO2

SO₂ gas in the top of the cylinder, liquid in the bottom

- Liquid solutions, 3-6%
 - Made from K₂S₂O₅ or from Compressed SO2
 - Densities of these solutions will differ dependant on their source of SO2



Wine Adds Website (www.wineadds.com)

Free SO2 Maintenance During Aging

Thank You!

Managing Sulfur Dioxide

Gordon Burns ETS Laboratories

Free, Bound, and Total SO₂

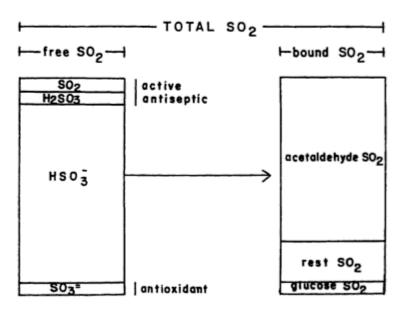


Figure 11-1 The Various Forms of SO₂ in Wine and Their Activity. Source: Reprinted with permission from J.M. deMan, 500 Years of Sulfite Use in Winemaking, Am. Wine Soc. J., Vol. 20, pp. 44-46, © 1988, American Wine Society.

Total sulfur dioxide			
Free sulfur dioxide Bound sulfur dioxi		Bound sulfur dioxide	
Molecular SO ₂	Bisulfite HSO ₃	Sulfite SO ₃ =	Sulfites attached to sugars, acetaldehyde, and phenolic compounds

Practical winery and vineyard jan feb 2009